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X-chromosome inactivation is a mechanism of dosage compensa-
tion in which one of the two X chromosomes in female mammals is
transcriptionally silenced. Once established, silencing of the in-
active X (Xi) is robust and difficult to reverse pharmacologically.
However, the Xi is a reservoir of >1,000 functional genes that could
be potentially tapped to treat X-linked disease. To identify com-
pounds that could reactivate the Xi, here we screened ∼367,000
small molecules in an automated high-content screen using an Xi-
linked GFP reporter in mouse fibroblasts. Given the robust nature of
silencing, we sensitized the screen by “priming” cells with the DNA
methyltransferase inhibitor, 5-aza-2′-deoxycytidine (5azadC). Com-
pounds that elicited GFP activity include VX680, MLN8237, and
5azadC, which are known to target the Aurora kinase and DNA
methylation pathways. We demonstrate that the combinations of
VX680 and 5azadC, as well as MLN8237 and 5azadC, synergistically
up-regulate genes on the Xi. Thus, our work identifies a synergism
between the DNAmethylation and Aurora kinase pathways as being
one of interest for possible pharmacological reactivation of the Xi.
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Female mammals are subject to a form of epigenetic regula-
tion termed X-chromosome inactivation (XCI), in which one

of the two X chromosomes is transcriptionally silenced to avoid
gene dosage imbalance compared with males (1–3). As a result
of this process, in any particular female cell an X-linked gene’s
function is provided solely by one of its two alleles. XCI has been
intensively investigated over the past 55 years and a number of
regulatory factors have now been identified. These factors in-
clude long noncoding RNAs (lncRNAs) that mediate X-chro-
mosome counting, allelic choice, and initiation of silencing, as
well as protein factors that interact with the lncRNAs to effect
each of these steps of silencing. XCI is observed in three contexts
in vivo in mice (4). In the male germline, the X and Y chro-
mosomes are inactivated together during pachytene of the first
meiotic prophase (5). In the preimplantation embryo, the pa-
ternally inherited X chromosome is inactive as a consequence of
imprinting (6). Finally, in the epiblast lineage, a random XCI
process occurs after the paternal X is reactivated (7).
Whereas XCI has been studied extensively, X-chromosome

reactivation (XCR) has been less amenable to molecular analysis
and its underlying mechanisms remain poorly understood (8–10).
XCR occurs naturally in two contexts. At embryonic day 4.0
(E4.0), the imprinted form of XCI is reversed and this paternal
X reactivation results in a transient state in which two active X
chromosomes (Xa’s) are present in the epiblast lineage (7). As
the embryo differentiates into three germ layers, random XCI

initiates for one of the two X chromosomes (11), a process that
begins with the expression of the noncoding RNA, “X-inactive
specific transcript” or Xist, from the future inactive X chromo-
some (Xi) (12) and continues with the recruitment of chromatin
modification factors such as Polycomb repressive complex 2 (13–
15). The same Xi then remains silenced for all subsequent cell
divisions throughout the life of the mouse—with the exception of
the germ cell lineage, in which XCI is once again reversed before
female meiosis (16, 17). Thus, during mouse development, mul-
tiple rounds of XCI and XCR occur.
Once silencing is established, the Xi is extremely robust and

becomes difficult to reactivate outside of the normal develop-
mental context, due to multiple parallel mechanisms of silencing
involving Polycomb complexes and histone H3 lysine 27 trime-
thylation, incorporation of variant histones, hypoacetylation of
histone tails, and increased DNA methylation (1–3, 18). How-
ever, the Xi harbors genes that could in principle be reactivated
to treat X-linked diseases, such as Rett syndrome and cyclin-
dependent kinase-like 5 (CDKL5) syndrome, two neurodevelop-
mental disorders affecting girls who are heterozygous for muta-
tions in methyl CpG binding protein 2 (MECP2) and CDKL5,
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respectively (19, 20). In recent years, several approaches have
been taken to define a pharmacological means of reactivating
the Xi in somatic cells. Two siRNA screens led to identifica-
tion of a number of factors, but the screens obtained divergent
results with no overlap (21, 22). Possible explanations for this
are that the screens might not have been fully comprehensive
or that XCI cannot be robustly overcome by disrupting a single
factor. Another screen involving siRNAs and a limited collection
of small molecules identified ribonucleoside-diphosphate reduc-
tase subunit M2 (RRM2) as being synergistic with 5-aza-2′-
deoxycytidine for reactivation of the Xi (23). In yet another approach,
Xist RNAwas used as bait to pull down interacting proteins, a number
of which could be targeted using small molecules to reactivate the Xi
(15). It was demonstrated that derepression of the Xi can be achieved
robustly only when two or more interactors were targeted. Although
>100 interacting proteins were identified, most of the interactors are
not druggable with small molecules. Thus, additional approaches are
needed to maximize the potential for pharmaceutical intervention.
With this in mind, here we undertake an unbiased approach and
perform a high-throughput small molecule screen to identify com-
pounds that will reactivate a reporter transgene on the Xi.

Results
A High-Throughput Screen for X Reactivation. We developed a fe-
male mouse fibroblast cell line, Xi-TgGFP, in which the Xi
carries a silent GFP transgene (24) as a reporter for reactivation
(Fig. 1A). Using the Xi-TgGFP cell line, we screened >367,000
molecules, combining compounds from the NIH’s Molecular Li-
braries Program, the Broad Institute’s Diversity-Oriented Synthesis
Library, and a panel of kinase and epigenetic inhibitors from the
National Center for Advancing Translational Sciences (NCATS)
(Fig. 1B). Because previous work demonstrated that the Xi is re-
pressed by multiple synergistic mechanisms (15, 18), we reasoned
that the odds of success would be increased by performing a
primed screen in which cells were sensitized to derepression with
the DNA methylation inhibitor, 5-aza-2′-deoxycytidine (5azadC), a
compound shown previously to elicit a very low level of Xi reac-
tivation (18). We chose a priming concentration of 0.5 μM 5azadC,
empirically determined to yield ∼1% GFP+ cells, a value that was
just above background levels (Fig. S1).
GFP reactivation in the Xi-TgGFP cells was scored in the high-

throughput, primed screen via automated microscopy, after a 3-day
treatment with each compound tested in duplicate at 7.5 μM with
5azadC priming. We found ∼1,900 compounds that reactivated
GFP in at least 10% of cells (on a normalized scale) (Methods). We
resourced ∼1,400 of these and repeated the GFP reactivation assay
at 5.0 μM and 0.5 μM (both concentrations with 0.5 μM 5azadC)
alongside a counterscreen for autofluorescence (i.e., false-positive
GFP signal). Almost all were either autofluorescent or too toxic.
The Aurora kinase inhibitors VX680 (25) and MLN8237 (26) were
chosen for further studies, as detailed below.

Synergism Between VX680, MLN8237, and 5azadC. The Aurora kinase
family consists of Aurora kinase A (AURKA), B (AURKB), and
C (AURKC). Whereas AURKA and AURKB are ubiquitously
expressed, AURKC is expressed only in the testis (27) and was
therefore not likely to be relevant as a target here. AURKA was
also recently identified in an shRNA screen for X reactivators using
a similar X-reactivation assay (22), and AURKB was identified as a
protein that directly interacts with Xist RNA (15).
Application of VX680 in the screen led to a 23.5% GFP-

reactivation average of two replicates (Fig. S1C). We reproduced
its reactivation via an independent assay, in which we used
quantitative RT-PCR (qRT-PCR) to measure GFP expression
(Fig. 2A). VX680 alone boosted GFP expression by 6.6-fold and,
when combined with 5azadC, by 4.3-fold over treatment with
5azadC alone. We compared this expression to that of a male
fibroblast line carrying the GFP transgene on the single, active
X chromosome (Xa-TgGFP), which represents the theoretical
maximum for GFP activity on the X chromosome. When nor-
malized to male Xa-TgGFP expression, the response of VX680
and 5azadC reached 13% of the theoretical maximum (15, 18).
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Fig. 2. GFP reactivation by Aurora kinase inhibitors, VX680 and MLN8237. (A) Xi-TgGFP female fibroblasts were treated for 3 d with VX680 at 1 μM, 5azadC
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Included in our screen were 28 other Aurora kinase inhibitors
apart from VX680. Whereas none elicited GFP-reactivation activity
within an acceptable level of cell toxicity (Table S1), MLN8237 was
confirmed with even greater reactivation activity than VX680 in the
GFP qRT-PCR assay (Fig. 2B). MLN8237 at 1 μM elicited 13.9-
fold activity by itself. When combined with 5azadC, it yielded a
16.6-fold reactivation level over 5azadC alone; this was 83.5% of
the male Xa-TgGFP control (Fig. 2B). MLN8237 is a more specific
AURKA inhibitor than VX680 (IC50 = 7 nM for AURKA in a cell
culture assay, vs. 1,500 nM for AURKB) (28). Combined, our
findings implicate the Aurora kinase pathway as one of potential
significance for pharmacological X reactivation.

AURKA and AURKB Knockdown Partially Recapitulates VX680- and
MLN8237-Induced Reactivation of GFP. Next, we sought to deter-
mine whether AURKA and AURKB are the relevant targets of
VX680 and MLN8237 for X reactivation. VX680 and MLN8237
(28, 29) can affect other protein kinases as well (30–32) (Table S2).
We directly tested the roles of Aurka and Aurkb in reactivation by
knocking down their expression with siRNAs alone or together.
Each was efficiently knocked down to ∼10% of normal levels (Fig.
2C). Aurora kinase knockdown alone led to no increase in GFP
expression. In the presence of 0.5 μM 5azadC, knockdown of either
AURKA or AURKB individually also did not result in increased
GFP transcription. However, with simultaneous knockdown,
GFP expression increased 4.8-fold relative to 5azadC treatment by

itself. Because this level was just 4% of Xa-TgGFP levels, compared
with 13% for VX680 or 83% for MLN8237, VX680- andMLN8237-
mediated reactivation can be attributed only in part to AURKA
and AURKB. Whereas residual Aurora kinase activity after
knockdown may be greater than after inhibition by VX680 or
MLN8237, it is also possible that these compounds target addi-
tional kinases to achieve their full effect on X reactivation.

Additional Effects of VX680. During mitosis, AURKA is necessary
for proper centrosome maturation, spindle assembly, and cen-
trosome separation. AURKB is a member of the chromosomal
passenger complex, which phosphorylates histone H3 and other
substrates for proper cytokinesis (27). Lack of AURKA function
is known to have a severe effect on cell cycle progression and to
cause lethality before implantation, whereas lack of AURKB is
known to be lethal after implantation and to cause errors in chro-
mosome segregation (33). Therefore, we further examined effects
of Aurora kinase inhibition on general cellular processes. As ex-
pected, cell proliferation was inhibited by VX680 in a dose-
dependent manner; this toxicity was similar with or without 5azadC,
consistent with the known effects of Aurora kinase inhibition on cell
division (Fig. 3A).
Work on Aurora kinases has shown that dividing cells lacking

both kinases exit mitosis before anaphase and give rise to an-
euploid daughters (34). We therefore considered the possibility
that apparent GFP reactivation might be an artifact of this. We
first looked at Xist expression and localization by FISH after
treating cells with VX680 alone to focus on its mitotic effects.
Interestingly, cells treated with 1 μM VX680 developed nuclei
more than five times the size of control-treated nuclei (Fig. 3B).
Furthermore, the VX680-treated cells exhibited an excessive
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number of Xist RNA clouds. By performing DNA FISH to de-
tect the GFP transgenic locus, control cells, which were tetra-
ploid due to immortalization with SV40 large T antigen, showed
an average of 1.9 ± 0.75 Xi per cell (n = 158), whereas VX680-
treated cells showed 7.6 ± 5.2 Xi per cell (n = 58) (Fig. 3C).
There was, however, no qualitative difference in the Xist clouds of
the control and VX680-treated cells, with Xist properly colocal-
izing with the GFP transgene probe for both. We also examined
steady-state Xist RNA levels by qRT-PCR (Fig. 3D). Nonsignifi-
cant differences were observed (P = 0.07); however, the downward
trend in Xist expression upon drug treatment was confirmed by
RNA sequencing (RNA-seq) (Fig. 3D and Fig. S2, and see be-
low), which showed Xist levels at between 45% (5azadC only)
and 53% (5azadC + VX680) of the control samples.
We then examined the DNA content of treated Xi-TgGFP cells

by FACS. Whereas most 5azadC-treated cells fell within peaks
corresponding to stages G1 and G2 of mitosis (Fig. 4A, Center;
∼33K and 55K on x axis), VX680-treated cells had higher DNA
content on average and a wider range of ploidies (Fig. 4B, Center,
and C, Center). Gating for GFP+ cells using side scatter (SSC) vs.
GFP fluorescence corrected for the increased autofluorescence of

the VX680-treated cells (Fig. 4, Left, Fig. S3, and Methods).
Treatment with 5 μM 5azadC resulted in 15.9% GFP+ cells (Fig.
4A, Left), compared with 0.0021% GFP+ mock-treated cells and
0.40% GFP+ 0.5 μM 5azadC-treated cells (Fig. S3). After 1 μM
VX680 treatment, 1.19% of the cells were GFP+ (Fig. 4B, Left).
The combination of 0.5 μM 5azadC and 1 μMVX680 again proved
synergistic for GFP reactivation, with 3.62% of treated cells GFP+

(Fig. 4C, Left). We next asked whether VX680-treated GFP+ cells
skewed toward higher DNA content, which would suggest that
aneuploidy played a significant role in GFP reactivation. Nota-
bly, DNA content of GFP+ cells was very similar to the profile of
all cells after VX680 treatment (Fig. 4B, Center and Right, and C,
Center and Right). Most of these cells were not GFP+ despite
having DNA content much greater than nontreated or 5azadC-
treated cells. Collectively, our data show that GFP reactivation
observed with VX680 treatment is unlikely to be due to aneu-
ploidy. Furthermore, the modest reduction in Xist expression
does not perturb localization to the Xi.

Reactivation of Native Xi Genes. To further explore the effects
of 5azadC and VX680 on native X-linked genes, we performed
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control (DMSO) treatment. (Right) Comparison with a control line, Xa-3, whereMecp2-Luc is on the Xa (note logarithmic scale). Error bars indicate SD. Means of at
least three biological replicates are shown. **P = 0.01 (P ≤ 0.005 for 5azadC, 5azadC + VX, and 5azadC + MLN each compared with the control without 5azadC.)
***P = 4.4 × 10−5. (C) Lamp2, (D) Fhl1, and (E)Msn aligned with mm9 in IGV (Top track for each panel). Note that, for the allelic analysis, reads appear only where
there are polymorphisms that enable distinction between cas (Xa) andmus (Xi). For B–D, normalized cas andmus reads are shown. The scale is indicated at Right;
note that it is smaller for mus reads. Xi-TgGFP cells were treated as indicated: 5azadC, VX680 (VX), or 5azadC + VX680 as in Fig. 2.
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qRT-PCR and RNA-seq after treatment with these compounds
(Fig. 5 A–E). A set of ∼250 X-linked genes that met minimum
expression levels was considered for each condition. Because the
Xi-TgGFP fibroblasts were derived from an F1 hybrid cross of
Mus musculus and Mus musculus castaneus parents, we could
analyze the data in an allele-specific manner using the >600,000
X-linked single-nucleotide polymorphisms that occur between
the strains; the Xa was invariably of castaneus origin (cas) and
the Xi of musculus origin (mus) (35). We confirmed reactivation
of GFP on the Xi and the synergistic effect of combining 5azadC
and VX680 (Fig. 5A). For native genes, we observed several
patterns, with reactivation defined as at least a threefold increase
over the control level that was statistically significant (FDR <
0.05). Some Xi-linked genes were affected by just one compound.
For example, mediator complex subunit 14 (Med14) was up-
regulated by 5azadC only, whereas lysosome-associated membrane
protein 2 (Lamp2) was reactivated by VX680 only; neither was

reactivated by the combination (Fig. 5C and Fig. S4). Meanwhile,
for four-and-a-half LIM domains protein 1 (Fhl1) (Fig. 5D) and
moesin (Msn) (Fig. 5E), the combination treatment resulted in a
synergistic boost of expression from the Xi. We also observed up-
regulation from the Xa (cas) allele in several cases, including Fhl1,
Msn, and solute carrier family 25 member 5 (Slc25a5) (Fig. S4).
Changes in expression of the Rett syndrome disease gene,Mecp2,

were not detected by RNA-seq. We therefore turned to a more
sensitive system, using a mouse fibroblast clonal cell line with a lu-
ciferase reporter knocked into the endogenous Mecp2 locus. Xi-8
cells contain this reporter on the Xi. We found that 5azadC in-
cubation resulted in measurableMecp2 reactivation, and the addition
of VX680, but not MLN8237, enhanced this reactivation significantly
(Fig. 5B). This activity, however, was three orders of magnitude less
than Xa-linked Mecp2-Luc activity (Xa-3 cells; Fig. 5B). Longer
treatment with 5azadC + VX680 or MLN8237 at lower concentra-
tions did not lead to significant increase over 5azadC alone (Fig. S5).
Whereas most Xi genes were not changed by more than two-

to threefold either up or down, some 12 to 24 genes on the Xi
were reactivated by at least threefold with an FDR of <0.05,
upon treatment with 5azadC, VX680, or their combination (Fig.
6). We compared Xi linked to autosomal responses (Fig. 6C and
Fig. S6). Chr13 is of similar size to the X chromosome and also
showed upward and downward gene expression changes of the
mus allele after treatment (Fig. S6). However, Xi genes showed a
greater overall magnitude of fold change compared with Chr13
genes (mus allele), both considering all genes on each chromo-
some, or only those on each with a significant change (Fig. S6).
Taken together, our data demonstrate that different treatments
elicited reactivation of distinct sets of Xi genes, raising the
possibility that defined drugs could be tailored to select genes or
regions on the Xi.

Discussion
Our work demonstrates that treatment of female cells with inhibitors
of DNA methylation (DNMT) and Aurora kinases leads to a syn-
ergistic reactivation of select genes on the Xi. The DNA methyl-
transferase inhibitor 5azadC has long been known to have a small
but significant effect on reactivating the Xi. Here we show that it can
do so synergistically with two Aurora kinase inhibitors. We find that
when the endogenous genes of the Xi are considered as a whole,
three different compound treatments (5azadC alone, VX680 alone,
or 5azadC + VX680) reactivate distinct subsets of genes on the Xi.
The affected genes are distributed across the length of the X chro-
mosome (Fig. 6B); interestingly, a cluster of 11 reactivated genes is
located adjacent to the macrosatellite locus DXZ4, a boundary that
separates two large megadomains of the Xi (15, 36, 37).
Whereas we do not fully understand the mechanisms of reac-

tivation, our data suggest several factors may be in play. First, we
observe that drug treatment results in a 50% down-regulation of
Xist RNA levels (Fig. 3D and Fig. S2). Although Xist localization is
unaffected, the reduced levels could potentially play a role in Xi
reactivation. Reduced Xist levels were also observed by Bhatnagar
et al. (22) upon knockdown of Aurka. The action of 5azadC on
DNA methylation and derepression of Xi genes is well established
(18, 38); however, its synergism with Aurora kinase inhibition has not
been previously reported. Our data indicate that direct inhibition of
AURKA and AURKB contribute to reactivation, as knockdown of
both Aurka and Aurkb accounts for some but not all of the GFP
reactivation resulting from VX680 or MLN8237 treatment (Fig. 2C).
Our data are consistent with recent findings regarding the Au-
rora kinases for maintaining silencing of the Xi. In the findings
of Bhatnagar et al. (22), shRNAs targeting Aurka resulted in
reactivation of various X-linked genes without obvious aneuploidy.
AURKB was also pulled down as a protein associating with Xist
RNA (15), and its inhibition in combination with 5azadC and eto-
poside treatments resulted in a synergistic reactivation of Xi genes.
AURKB has also been implicated in regulating XIST RNA
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adherence to the Xi in human cells undergoing mitosis (39). Signif-
icantly, our unbiased approach via a high-throughput screening assay
independently identified AURKA and AURKB as relevant targets.
Beyond the finding that the DNA methylation and Aurora

kinase pathways act in suppressing the Xi, it is clear that appli-
cation of VX680 or MLN8237 would be toxic as a therapeutic in
the setting of mitotically active cells. Future efforts toward de-
veloping a drug based on the synergy between DNMT1 and the
Aurora kinases must tease apart the Xi-reactivation effects of
VX680/MLN8237 from the effects on the cell cycle. Tests in
nondividing cells, such as neurons, would be of particular interest
for neurological disorders such as Rett syndrome. Evidence that
the Xi reactivation is distinct from cell cycle effects includes the
fact that VX680 and MLN8237 both affect the cell cycle, but
their effects on Xi reactivation are not identical. It is possible
that other kinases inhibited by VX680 and MLN8237 contribute
to the reactivation that may not be cell cycle dependent (Table
S2) (30, 32). In the future, it may also be possible to use me-
dicinal chemistry to enhance VX680’s Xi-reactivation potential
while reducing the effects on cell cycle and other pathways.

Methods
Work involving mice adhered to the guidelines of the Massachusetts Gen-
eral Hospital Institutional Animal Care and Use Committee (IACUC) protocol

no. 2004N000100. Immortalized Xi-GFP tail tip fibroblasts (TTFs) for screening
were derived from a cross between a M. musculus strain carrying an X-linked
GFP marker (24) and a M. m. castaneus WT mouse. The high-throughput
small molecule screen was performed on the Thermo CRS Catalyst Ex-
press with automated high-content imaging via ImageXpress Micro. FISH
to Xist RNA was performed as described (40). Knockdowns of Aurka and
Aurkb were performed using siRNAs from Dharmacon lipofected into Xi-
TgGFP fibroblasts. FACS was performed on the BD LSR II and results
were analyzed using FlowJo. RNA-seq analysis was performed as pre-
viously described (15) on two biological replicates. Details can be found in
SI Methods.
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